Note
Go to the end to download the full example code.
2D Mixed-HistogramΒΆ
Data on a regular two-dimensional grid which is the combination of an image and a histogram.
The x-axis defines the bin edges along the second dimension. The y-axis defines the grid coordinates along the first dimension.
@NX_class = "NXroot"
@default = "scan1"
scan1:
@NX_class = "NXentry"
@default = "data"
data:
@NX_class = "NXdata"
@axes = ["y", "x"]
@signal = "z"
x: NX_FLOAT64[7]
y: NX_FLOAT64[16]
z: NX_FLOAT64[16,6]
Explanation:
@axes
has two values which corresponds to the signal rank of two.z
is the default signal to be plotted versusx
andy
.z
has 16 rows and 6 columns.x
has one more value than the second dimension ofz
since it contains the bin edges.

# Data
import numpy as np
x = [-3.0, -2.5, -1.0, 0.0, 1.0, 2.5, 3.0]
y = np.linspace(-3, 3, 16)
nx = len(x) - 1
ny = len(y)
z = np.zeros((ny, nx))
xx = np.linspace(-3, 3, 200)
for i in range(ny):
zi = (1 - xx / 2 + xx**5 + y[i] ** 3) * np.exp(-(xx**2) - y[i] ** 2)
z[i, :], _ = np.histogram(xx, bins=x, weights=zi)
# Plot
import matplotlib.pyplot as plt # noqa E402
plt.style.use("_mpl-gallery-nogrid")
fig, ax = plt.subplots()
y_new = np.empty_like(y, shape=(len(y) + 1,))
y_new[0] = 2 * y[0] - y[1]
y_new[1:-1] = (y[:-1] + y[1:]) / 2
y_new[-1] = 2 * y[-1] - y[-2]
mesh = ax.pcolormesh(x, y_new, z, linewidth=0.7)
plt.show()
Total running time of the script: (0 minutes 0.037 seconds)